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ABSTRACT

For decades, the high-performance computing (HPC) comtsnuni
has focused on performance, where performance is de ngukssls
To achieve better performance per compute node, microproce
sor vendors have not only doubled the number of transistord (
speed) every 18-24 months, but they have also doubled therpow
densities. Consequently, keeping a large-scale HPC syfstietn
tioning properly requires continual cooling in a large nmiaetroom,
thus resulting in substantial operational costs. Furtleenthe in-
crease in power densities has led (in part) to a decreasestarsy
reliability, thus leading to lost productivity.

To address these problems, we propose a power-aware hfgorit
that automatically and transparently adapts its voltage@guency
settings to achieve signi cant power reduction and eneayires
with minimal impact on performance. Speci cally, we levgea
a commodity technology called “dynamic voltage and freqyen
scaling” to implement our power-aware algorithm in the time
system of commodity HPC systems.

1. MOTIVATION

The notion of power-aware (or low-power) computing @ new,
particularly in the areas of embedded systems and mobile com
puting [3, 4, 8, 9, 10, 13, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28]
where reducing energy consumption is critical in extendiatiery
life. Laptops, for example, use simple power-aware alpor that
are based only on CPU (i.e., processor) utilization [10]kimg
them ideal for interactive use. That is, if a laptop user &lirg a
document for an extended period of time while running ondogtt
power, the laptop would automatically scale down the freqye
and supply voltage of the CPU in order to reduce power consump
tion, as power consumption is proportional to the CPU fregye
and to the square of the CPU supply voltage. The commaodity tec
nology that enables the above scaling of frequency andg®fiar
CPUs is calledlynamic voltage and frequency scaling (DVE®)
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contrast, the notion of power awareness (or low povigerew to
the high-performance computing (HPC) community.

Why the above distinction? First, the computational charac
teristics found in embedded systems and mobile computig, e
laptop, differ markedly from those found in HPC. As a restliie
power-aware algorithms that work well for the interactige fiound
in laptops fail miserably with respect to scienti ¢ applimas [11].
Second, power awareness is needed for different reasorem-n
bedded and mobile computing, power awareness is needed to ex
tend battery life; whereas in HPC, it is needed to reduce pleg-o
ational costs of powering and cooling HPC systems as welbas t
improve reliability.

The issue of reliability in large-scale HPC systems is patgirly
insidious. For example, Table 1 shows the current religbdf
leading-edge supercomputers [21]. With power densitieslitag
every 18-24 months (Figure 1) and large-scale HPC systems co

[ System [ CPUs] Reliability |
ASCI 8,192 | MTBI: 6.5 hrs.
Q HW outage sources: storage, CPU , memory.
ASCI 8,192 | MTBF: 5 hrs ('01) and 40 hrs ('03).
White HW outage sources: storage, CPU, 3rd-party HW.
PSC 3,016 | MTBI: 9.7 hours.
Lemieux
Google 15,000 | 20 reboots/day; 2-3% machines replaced/year.

HW outage sources: storage, memory.

MTBF/I: mean time between failures/interrupts

Table 1: Reliability of Leading-Edge Supercomputers.
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Figure 1: Moore's Law for Power Consumption.



Service Cost of One Hour

of Downtime
Brokerage Operations $6,450,000
Credit Card Authorization $2,600,000
eBay $225,000
Amazon.com $180,000
Package Shipping Services $150,000
Home Shopping Channel $113,000
Catalog Sales Center $90,000

Table 2: Estimated Costs of an Hour of System Downtime.

tinuing to increase in size, the amount of heat generateti{ance,
temperature) continues to rise. And as a rule of thumb, Avitex
equation as applied to microelectronics notes that foryet8rC
(18 F)increase in temperature, the failure rate of a systemldsub

Our own informal empirical data, taken from late 2000 toyarl
2002, supports Arrenhius' equation. In the winter, whentta-
perature inside our warehouse-based work environmentroasa
70-75 F, our traditional cluster —tittle Blue Penguin (LBP)—
failed approximately once a week; in the summer, when the tem
perature increased to 85-99 the cluster failed twice a week.

Even more worrisome is how our computing environment af-
fected the results of the Linpack benchmark running on a very
dense, 18-node Beowulf cluster. After ten minutes of exenut
the cluster produced an answer outside the residual (islemat
error) when running in our dusty 86 warehouse but produced
the correct answer when running in a 6€émachine-cooled room.
Clearly, the HPC community must worry about power and iteaff
on reliability.

Furthermore, every hour that an HPC system is unavailades{r
lates to lost business or lost productivity. This issue igxifaor-
dinary importance for companies that rely on parallel-catimy
resources for their business, as noted in Table 2 [1].

Therefore, to address the above issues, we startesighercom-
puting in Small Spaces (SS3pject (http://sss.lanl.gov/) in 2001.
The rst major instantiation of the SSS project was a 240-CPU
energy-ef cient cluster calledsreen Destiny This Linux-based
cluster possessed a footprint of only ve square feet angesip
as little as 3.2 kW of power (i.e., two hairdryers). It proddcl01

ies about the feasibility of employing DVFS to reduce therthe
mal power envelope of a high-performance computing (HP@gno
and thus, improve reliability, while minimizing impact ormnqfor-
mance [2, 6]. With this knowledge that DVFS can indeed be ef-
fective in HPC, the next step is to develop various approstiet
leverage DVFS. Such approaches include manual DVFS tubing [
7], compiler analysis with pro ling [12], MPI library-baskexten-
sions, or an adaptive run-time system [11].

Manual DVFS tuning often involves pro ling of the execution
behavior of a program (or its structures) at all possiblgdency-
voltage settings. It can be as simple as recording the @redirne
of the program at each available CPU frequency, and theig tisin
pro le to select the lowest frequency that satis es the pearfance
constraint to execute the program. The feasibility studfd®, 6]
fall into this category.

However, this approach is very coarse-grained. For example
Figure 2 shows the pro le for three frequency-voltage camabi
tions on SPEGomcatv benchmark. With a 5% performance-
slowdown constraint in place, the gure indicates that éhdoes
not exist any DVFS setting that simultaneously reducesggreon-
sumption and meets the 5% slowdown constraint. The 1.6G8¥/1
and 1.2GHz/1.1V settings produce 6% and 22% performanuee slo
downs, respectively.

\ ExeTime B SysEnergy\

150%

122%

120% -
’ 106%

91%

100% 100%
92%
90% -

60% -

30% -

0%

2.0GHz/1.5V 1.6GHz/1.3V 1.2GHz/1.1V

Figure 2: The performance-power pro les of tomcatv .

G ops on the Linpack benchmark, which was as fast as a 256-CPU A more sophisticated approach to manual DVFS tuning is tk oo

SGI Origin 2000, as shown at http://www.top500.0rg/li802/11/.
Despite its admirable performance at the time, many stilltfat
Green Destiny sacri ced too much performance to achieve low
power consumption and high reliability, i.e., no unschedudown-
time in its 24-month lifetime while running at 7,400 feet absea
level in a dusty 85F warehouse without any cooling, air Itration,
or air humidi cation.

To simultaneously address the performance issue as welkas ¢
ate a general power-aware solution that works on any contgnodi
platform that supports DVFS, we propose a power-aware isfgor
called the -adaptation algorithm, implement the algorithm in the
run-time system, and evaluate its performance on commeétig
platforms, both uniprocessor and multiprocessor. The esadltris
a power-aware run-time (PART) system that transparentlyaan
tomatically adapts CPU voltage and frequency in order toiced
power consumption (and energy usage) while minimizing ichpa
on performance.

2. RELATED WORK

At the present time, there exists a handful of insightfulecstsid-

into the program structure of the code and pro le each irstng
program sub-structure for its execution behavior. toncatv
whose program structure is shown in Figure 3, this meandlipg
the execution times of loop nests L1 to L9 at each CPU frequenc
astomcatv executes a sequence of nested loops. tbhecatv
benchmark spends most of its execution time executing 1€@ps
to L8 iteratively, with the number of iterations controlleg the
variable ITACT in the code. In [5], Freeh et al. used this apgh
to select the CPU frequency to run for each loop nest and MPI ca
Figure 4 shows the execution times of the most time-consgimin
loops (i.e., L2, L5, L7, and L8) inomcatv . For readability, we
normalize all loop execution times with respect to the ekeou
time of theentire  benchmark running at 2.0 GHzThe gure
indicates that with a 5% performance-slowdown constrafére
exist many scheduling options. For example, we can exeoofe |
L2 at 1.6 GHz, resulting in a 3% slowdown; or we can execute
loops L5, L7, and L8 at 1.2GHz.

°That is, at the 2.0GHz/1.5V setting, 32% of the executioretim
spent in loop L2, 24% in L5, 18% each in L7 and L8, and 8% in
the remaining loops in total.



Figure 3: The program structure of SPEC benchmarktomcatv .

OL20L50L7 0L8

50%

44%

40% -
35%

32%

% -
30% b6%

24% 25%

20%
20% - 18%18% 19%180 ©19%

10% 4

0%

2.0GHz/1.5V 1.6GHz/1.3V 1.2GHz/1.0V

Figure 4: The execution-time pro le of tomcatv .

Though the above approach for manual DVFS tuning is straight
forward, it can be quite tedious, especially as the numbeald
frequency-voltage settings increases and the prograrctsieibe-

top usage of Microsoft Of ce, and depends critically upoa thoice
of the threshold values [10]. For scienti ¢ applicationts éffec-
tiveness is abysmal as such applications do not have an abcad
of CPU idle time [11].

Other more sophisticated approaches based on CPU ublizati
such as those in [25] only provide loose control over DVF&Jiced
performance slowdown, e.g., 37% slowdown with only 12%e3yst
energy savings for the SPEf® benchmark, because the CPU uti-
lization ratio by itself does not provide enough timing infation.
Therefore, we conclude that there exists a need for a powarea
run-time system that has tight performance-slowdown cbmatnd
can deliver considerable energy savings.

3. -ADAPTATION ALGORITHM FOR A

POWER-AWARE RUN-TIME SYSTEM

Leveraging the DVFS mechanism, we propose an automatically
adapting, power-aware algorithm that is transparent teused ap-
plications and can deliver considerable energy savings tight
control over DVFS-induced performance slowdown. Perforoea
slowdown in this paper is de ned as the increase in relatkace-

comes more complex. Consequently, due to the complexity of tion time with respect to the execution time when the progism

manual DVFS tuning for large-scale applications such anatk
modeling, automated pro ling and subsequent pro le analyis

often desired. In [12], Hsu and Kremer propose such an imple-

mentation based on compiler techniques. In their impleatint,
compiler techniques such as control- ow-graph analysisumed to
deal with the time overheads caused by setting the CPU fregue
and voltage as each such setting takes on the order of rodlisks.
Fortomcatv , their software chooses to slow down loops L6, L7,
and L8to 1.2 GHz.

running at the peak CPU speed. A user can specify the maximum
allowed performance slowdown(e.g., =5%), and our algorithm
will schedule CPU frequencies and voltages in such a waythieat
actual performance slowdown does not exceed

Our power-aware algorithm, which we call theadaptation al-
gorithmfor reasons that will become apparent later, is an interval-
based scheduling algorithm, i.e., scheduling decisioesnaade
at the beginning of time intervals of the same length (exgne
second). Interval-based algorithms are generally easynpder

The problems with the aforementioned approaches are three-ment because they make use of existing “alarm clock” funetiity

fold. First, they are all essentially pro le-based and gafig re-
quire the source code to be modi ed. As a result, these aphesa

found in the operating system. By default, our power-awége-a

rithm (and its software realization as part of the run-tingstam)

are not completely transparent to the end user. Second, becausesets the interval length to be one second. However, theitigor

the pro le information can be in uenced by program inputetie
approaches are input-dependent. Third, as noted in [1&2]n#tru-
mentation of source code may alter the instruction accesrpa
and therefore, may produce pro les that are consideraliferdint
from the execution behavior of the original code. So, in thigo
while these approaches might provide maximal bene t re¢ato
performance and power, they are of little use to end-uselicaep
tions. Therefore, we believe that there exists a need farspar-
ent and self-adapting run-time system for power awareness.

The current approach towards an adaptive run-time system fo
power awareness is based primarily on CPU utilization, efs-
peed on laptops.

allows a user to change this value per program executionvalne
is denoted as hereafter.

In contrast to previous approaches, we want to ensure thiat ou
power-aware algorithm does not require any applicaticecsp
information a priori, e.g., pro ling information, and mogener-
ally, that it is transparent to end-user applications. &fme, it
must implicitly gather such information, for example, by mitor-
ing the intensity level of off-chip accesses during eackrivdl
in order to make smart scheduling decisions. Intuitivelgew the
intensity level of off-chip accesses is high, it indicatbattpro-
gram execution is in a non-CPU-intensive phase, henceatidig

For cpuspeed, when CPU utilization is below that this phase can execute at a lower CPU frequency (arabe)lt

some threshold, the CPU voltage and frequency are lowered towithout affecting its performance.

conserve energy; when the CPU utilization exceeds somstthre
old, the CPU voltage and frequency are raised to improveoperf
mance. Although this simple approach is both applicatiord a
input-independent, it is only effective for interactiveeug.g., lap-

While conceptually simple, this type of algorithm must ever
come the following obstacle in order to be effective: Thergua

ti cation of the intensity level of off-chip accesses neg¢ds$ave a

direct correlation between CPU frequency changes and ggaeu



time impact; otherwise, the tight control of DVFS-inducestfpr-
mance slowdown will be dif cult to achieve. For example, one
might think that the high cache-miss rate is a suitable mtdicthat
program execution is in a non-CPU-intensive phase. Butssnle
we can predict how the execution time will be lengthened for e
ery lower CPU frequency that may be executed in this non-CPU-
intensive phase, the information of the high cache-misswilt not
help in the selection of the appropriate CPU frequency tataai
tight control of DVFS-induced performance slowdovitherefore,
we need a model that associates the intensity level of gifastt
cesses with respect to total execution time.

To overcome the above problem, we propose a model that is
based on the MIPS rate (i.e., millions of instructions peosel)
which can correlate the execution-time impact with CPUdiertpy
changes:

@)

The leftmost term——— represents the execution-time impact
of running at CPU frequency in terms of the relative execution
time with respect to running at the peak CPU frequency . The

rightmost term introduces a parameter, called

, that quanti es the intensity level of off-chip accessey. d& -
nition, indicates that execution time doubles when the CPU
speed is halved, whereas means that execution time remains
unchanged no matter what CPU speed will be used. Finally, the
middle term provides a way to describe the observed
execution-time impact and will be used to adjust the value.of

Ideally, if we knew the value of a priori, we could use Equa-
tion (1) to select an appropriate CPU frequency to executien
current interval such that the DVFS-induced performanosvsl
down is tightly constrained. (The selection of this CPU freacy
will be presented later.) But because we want ensure thgtawer-
aware algorithm does not require any application-specifoima-
tion a priori, is notknown a priori. Therefore, the challenge for
our automatically-adapting, power-aware algorithm liethie “on-
the- y” estimation of at run time, and hence, leads us to name
our power-aware algorithm as theadaptation algorithm.

To estimate at runtime, we use a regression method over Equa-
tion (1) and leverage the fact that most DVFS-enabled mioags-
sors support a limited set of CPU frequencies to performebeas-
sion. That is, given CPU frequencies , we derive a
particular value that will minimize the least-squared error:

X
@)

By equating the rst differential of (2) to zero, we can dexiv as
a function of the MIPS rates and CPU frequencies, as follows:

P

mips
mips

o

©)

Once we calculate the value of using Equation (3), we can
plug the value into Equation (1) and calculate the lowest GeuU

guency whose predicted performance slowdown ——

does not exceed the maximum possible performance slowdown
Mathematically, this establishes the following relatioips

. By solving this equation for, we determine the

desired frequency that the CPU should run at:

4)

Conglomerating the aforesaid theory results in thadaptation
algorithm shown in Figure 5. In essence, this power-awage-al
rithm wakes up every seconds. The algorithm then calculates the
value of using the most up-to-date information on the MIPS rate
based on Equation (3). Onceis derived, the algorithm computes
the CPU frequency for the interval based on Equation (4). Since
a DVFS-enabled microprocessor only supports a limited sieeo
quencies, the computed frequency may need to be emulated in
some cases. (The emulation scheme is shown in Figure 6. Tibe ra

denotes the percentage of time to execute at frequengyThis
sequence of steps is repeated at the beginning of each seinseq
interval until the program executes to completion.

Hardware:
frequencies
Parameters:

: the time-interval size (default 1 sec).
: slowdown constraint (default 5%).

Algorithm:

Initialize mips ( ), , by executing

the program at for seconds.
Repeat
1. Compute coef cient .
P mips
mips

P
F

2. Compute the desired frequency.

3. Execute the current interval at.
4. Updatemips ().
Until the program is completed.

Figure 5: -Adaptation Algorithm for a Power-Aware Run-
Time System.

To extend the -adaptation algorithm from the uniprocessor en-
vironment that is implicitly assumed above to a multipreoesen-
vironment, we simply replicate the algorithm onto each pssor
and run each local comsynchronouslyWe adopt this strategy for
the following reasons. First, the intensity level of offglaccesses
is a per-processor metric. Second, a coordination-baseerpo
aware algorithm would need extra communication, and likem-
chronization — both of which add to the overhead costs (imsaf
performance and energy) of running the power-aware alyost
And as we will see in Section 5.2, theadaptation algorithm run-
ning asynchronously on each processor is quite effectigawng
energy while minimizing impact on performance.

In summary, our -adaptation algorithm is a power-aware and
interval-based algorithm that is parameterized by two-tiseable
variables: the maximum performance-slowdown constraiahd
the interval length . The default values of which are 5% and one



3. Perform the following steps:

(a) Figure out and

(b) Compute the ratio.

(c) Run
(d) Run

seconds at frequency .
seconds at frequency

Figure 6: Step 3 of -Adaptation Algorithm.
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Figure 7: The Experimental Setup.

second, respectively. To facilitate an empirical evabhratf the ef-
fectiveness of this algorithm, we implement it in the rumei sys-
tem, thus creating a power-aware run-time (PART) systemthéfe
test the PART system on uniprocessor and multiprocesstioptzs
using appropriate benchmark suites, as discussed in 8ektio

4. EVALUATION METHODOLOGY AND
EXPERIMENTAL SETUP

In this section, we describe the evaluation methodologyeaad
perimental setup that we use to evaluate the effectiveniessro
-adaptation scheduling algorithm.

4.1 Evaluation Methodology

To measure the execution time of a program, we use the global-
time query functions provided by the operating system. is th
paper, the execution time is referred to as the wall clocletoh
program execution.

The energy consumption of a program execution is often mea-
sured via a power meter. In our experiments, the power mster i
connected to a power strip that passes electrical energy the
wall power outlet to the system under test, as shown in Figure
The power meter periodically samples the instantaneougrsys
wattage, and thital system energy consumptisrihen calculated
as the integration of these wattages over time. Speci calyuse
a Yokogawa WT210 power meter whose sampling rate is2per
sample and note that the power meter is also capable of p@rfor
the aforementioned integration internally.

Unfortunately, evaluating DVFS scheduling algorithmsdzhsn
total system energy savings can be misleading since DVRESabnl

fects CPU energy consumption. Because the percentage of CPU___

energy consumption, relative to the total system energgajszan
vary widely from platform to platform, the evaluation resube-
come platform-dependent.

For example, consider two DVFS scheduling algorithms, each
of which is able to reduce the total system energy by 9%. Intu-
itively, the two algorithms might be considered equallyeefive.
However, what if one algorithm was evaluated on a HPC server
where the CPU accounts for 30% of the total system energy us-
age while the other algorithm was evaluated on a high-perdioce
laptop computer where the percentage increases to 60%? dBack
the envelope calculatiohshow that the former algorithm reduces
CPU energy by 30% and the latter algorithm reduces CPU energy
by 15%. Clearly, the former algorithm is more effective thiha
latter algorithm. This example illustrates that using thefprm-
dependent, total system energy savings prohibits us franpao-
ing DVFS algorithms evaluated on different platforms. Hfere,
in this paper, we evaluate the effectiveness of owrdaptation al-
gorithm based on CPU energy savings.

Unfortunately, direct measurements of CPU energy consompt
present technical challenges. A common but obtrusive nddthim
place a shunt resistor in series with the microprocessgrafl its
input power supply. The power meter is connected to this tshun
resistor in order to measure the energy used by the micregproc
sor [22]. However, obtrusive methods based on shunt resiate
argued to be less appropriate because shunt resistofeintesith
operation of the system under test and unsuitable when trere
large variations in current [14].

In this paper, we use an unobtrusive method to estimate the CP
energy consumption. We leverage a rst-order power modeife
CPU [16] and divide the sampled system wattage from the power
meter into two parts:

|—(z—) ®)

the CPU power

The rstterm in the system wattage () equation represents the
CPU power consumption and depends on the current voltage
and CPU frequency.* The second term () is independent
of voltage and frequency and captures the power consumpfion
system components that avet driven by CPU clocks.

To estimate the CPU energy consumption for a given applicati
input pair, we perform a least-squared regression on Eoyud#h)
with observation data derived from executing the applcathput
pair at each possible frequency-voltage combination. Singple
approach turns out to be quite accurate when using the Retjua
metric. The R-squared metric indicates the relative ptagipower
of a model; its range is between zero and one, inclusive. Tdsec
the R-squared metric is to one, the more predictive that tmuéb)
is. For all the benchmarks that we ran in this paper, R-sguare
very close to one. Therefore, we adopt this unobtrusiveasmtr to
estimate CPU energy consumption in order to derive CPU gnerg
savings that the -adaptation algorithm can deliver.

4.2 Systems Under Test

In this section, we detail the hardware and software thatseel u
for the performance evaluation of theadaptation algorithm in
our power-aware run-time (PART) system. We begin by present
ing the con gurations of the uniprocessor and multiproce$sard-
ware platforms under test. Then, we describe the systerhsasef
on these platforms, followed by information about our inmpém-
tation of the -adaptation algorithm. Finally, we list the set of se-

3For the rst algorithm, the CPU energy savings is calculasd
; for the second algorithm, the savings-is-

“The constant in denotes the switched capacitance
which caused the energy to be consumed.s application- and
input-dependent.



Figure 8: Celestica A8440.
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Table 3: The Operating Points of Our Tested Computer Sys-
tems.

quential and parallel benchmarks that we used for the etiraiuaf
our -adaptation algorithm.

The tested uniprocessor platform is based on an Asus K8\@elu
motherboard that is bundled with an AMD Athlon64 3200+ pro-
cessor (with 1-MB L2 cache) and 1-GB DDR-400 main memory.
The tested multiprocessor platforms include a cluster of & the
above Athlon64-based compute nodes connected via Gigetat-E
net and another four-node quad-CPU cluster based on thet{cale
A8440 server. As shown in Figure 8, the Celestica A8440 serve
is a 4U server with four AMD Opteron 846 processors (and also
1-MB L2 cache per processor) and 4-GB DDR-333 main memory.
This Opteron-based cluster is also connected via Gigabé#riet.

In our experiments, both Athlon64 3200+ and Opteron 846 pro-
cessors can execute from 800 MHz at 0.9 V to 2 GHz at 1.5 V.
Table 3 lists the four valid operating points (i.e., frequenoltage
pairs) that our -adaptation algorithm can set during program exe-
cution. In theory, an Athlon64 3200+ processor can supgdodkc
frequencies from 800 MHz to 2 GHz at an increment of 200 MHz.
So, why are only four operating points used? In practice stte
of CPU frequencies that can transition to each other diréc#.,
without intermediate frequencies) in an Athlon64 3200+cpssor
is restricted. Since the time overhead for a direct frequendtage
transition is already on the order of milliseconds (as showig-
ure 9), we restrict ourselves to use only a subset of supp@RU
frequencies that have direct transitions to each otherofrar fre-
guencies, we emulate them using the algorithm in Figure 6.

The operating system on the tested hardware platforms i& SuS
Linux 2.6.7. This Linux distribution comes with GNU compil-
ers 3.3.3, a DVFS interface callegpufreq , and a DVFS ker-
nel module callechowernow-k8 . The cpufreq interface al-
lows our -adaptation algorithm to set a desired CPU frequency
by writing the frequency to a particulésys le. We did not use
the powernow-k8 kernel module in the distribution; instead, we
use a version gbowernow-k8 that is freely downloadable from
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Figure 9: The Latency of Each Operating-Point Change.

the AMD website and allows us to specify Table 3 in the module.
The end result is that whenever we write the target CPU frecue
through thecpufreq interface, the CPU voltage associated with
this frequency, as speci ed in Table 3, will also be set awdtioally

in kernel space.

Our prototype implementation of the-adaptation algorithm is
has less than 500 lines of C code. The use of the implementatio
similar to the use of a Uniime command. The implementation
will fork two threads, one for the execution of the targetgram
(as speci ed on the command line) and the other for the exaut
of Figure 5. Thus, our performance evaluation includes itihe t
and energy overheads of running the@daptation algorithm on top
of the normal program execution.

With respect to the benchmarks, we used the SPEC CFP95 and
CPU2000 benchmarks for the uniprocessor platform and the la
est NAS-MPI benchmarks, version 3.2, for the multiprocegéat-
forms. With the exception of SPEC CPU2000 benchmarks, all th
other benchmarks were compiled using the GNU compiler 3.3.3
with optimization levelO3. The CPU2000 benchmarks were com-
piled using the Intel compiler 8.1 with the optimization ébvxW
-ip -O3 . We used the Intel compiler, instead of the GNU com-
piler, because CPU2000 contains several FORTRAN-90 chdes t
the GNU compiler does not yet support. For the MPI benchmarks
LAM/MPI version 7.0.6 was used to run the benchmarks.

5. EXPERIMENTAL RESULTS

This section presents a performance evaluation of ealaptation
algorithm as itis implemented in our power-aware run-til&RT)
system. As implicitly noted earlier, we evaluate the PARStegn
in both uniprocessor and multiprocessor environments.

5.1 Uniprocessor Platform

We rst compare the performance of our automatically-aatapt

-adaptation algorithm (that is running in our power-awara-r
time system) to the compiler-based approach presente@jimfien
running the SPEC CFP95 benchmarks. Although the CFP95 bench
marks have been retired for ve years, they allow us to compar
the results from our -adaptation algorithm to previous case stud-
ies [11, 12]. We then evaluate the effectiveness of our p@amere
run-time (PART) system when running the SPEC CPU200 bench-
mark suite.

5.1.1 SPEC CFP95 Benchmarks

Figure 10 shows a comparison of the actual performance slow-
down between the run-time approach (denotethets ) and the
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Figure 10: The Actual Performance Slowdown of the -
Adaptive Run-Time Approach versus the Compiler-Based Ap-
proach of Hsu et al.

compiler approach (denoted asu). Here we see that the ac-
tual performance slowdown induced by the compiler algariib
poorly regulated given that the maximum performance-stowd
constraint was speci ed as 5%. In contrast, thadaptation algo-
rithm, which is the foundation of our power-aware run-tirRART)
system, regulates the actual performance slowdown mudtérbet

Further investigation reveals that the benchmarks thatecthe
compiler approach to induce unacceptable performancedsiow
(i.e.,mgrid ,turb3d , andapsi )have CPU-bound execution be-
havior. This implies that the-adaptation algorithm for our PART
system will perform more effectively on CPU-bound prograhen
the compiler approach will. Empirical results from a laptmm-
puter [11] corroborate the above conclusion.

The effectiveness of our PART system is due to the validity of
Equation (1). If we apply the least-squared regression ertiua-
tion using theoverall execution time at various CPU frequencies for
CFP95, we will see that R-squared is close to one for each EFP9
benchmark. In other words, Equation (1) is a good performanc
prediction model for CFP95.

Relative to CPU energy reduction, previous studies sucii s [
12] report an average CPU energy reduction of 20% using time co
piler approach on a laptop computer. In contrast, the aeeGRjJ
energy savings for our uniprocessor HPC server platformousiir
automatically-adapting software is about 11%. The gap &etw
the two energy-saving values is due to the difference in lchea
size. For the laptop, the L2 cache size is only 256 KB whereas t
L2 cache size for the HPC server is four times larger at 1 MB1-Co
sequently, the intensity afff-chipaccesses for the laptop is signif-
icantly higher than for the HPC server, thus providing sasally
more opportunities for energy savings for the laptop.

5.1.2 SPEC CPU2000 Benchmarks

CFP2000
25%
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Figure 11: The Actual Performance Slowdown and CPU En-
ergy Savings of CPU2000 Benchmarks Using Our PART Sys-
tem.

ings due to the correspondingly fewer off-chip accesses.

5.2 Cluster Platform

In this section, we present experimental results on an Age
base cluster with four single-CPU nodes connected via @&igab
Ethernet as well as an Opteron-based cluster with four giRd-
nodes connected via Gigabit Ethernet. For both clusteesMBI
implementation is LAM/MPI, version 7.0.6, and the benchiksaof
choice is the latest NAS-MPI benchmarks, version 3.2.

For our four-node Athlon64 cluster, Figure 12(a) shows trez-a
age value for each of the eight NAS-MPI benchmarks as well as
the associated R-squared metric for the class B workloadcgR
that the larger the , the more CPU-bound the benchmark.) The
value of the benchmarks spans from 0.33 (IS benchmark) ® 1.0
(CG and EP benchmarks) with an average value around 0.57- Com
pared to the SPEC CPU2000 benchmarks, the NAS-MPI bench-
marks are generally less CPU-bound, which means more apport
nities that can be exploited by the PART system for CPU energy

Here we evaluate the effectiveness of our PART system acrossreduction under the same performance-slowdown constraint

the entire SPEC CPU200 benchmark suite. Figure 11 showsthe a
tual performance slowdown and the CPU energy savings detive
by the PART system. The transparent and automaticallytadap

-adaptation algorithm in the PART system reduces the CPU en-

ergy consumption by 12% (on average) with only a 4% actual per

Figure 12(b) shows the actual performance slowdown and CPU
energy savings of NAS-MPI for the class B workload. On averag
our PART system saves 14% CPU energy at 5% actual performance
slowdown. For the class C workload, the average savingsastab
12% at the cost of 4% actual performance slowdown, as shown in

formance slowdown for SPEC CFP2000; for SPEC CINT2000, the Figure 13.

two numbers are 9.5% and 4.8%, respectively. Because the av-

erage values for CFP2000 and CINT2000 are 0.66 and 0.83,
respectively, this means that CINT2000 is more CPU-bouad th
CFP2000, and therefore, has fewer opportunities for ensagy

For the Opteron-based cluster, Figure 14 shows that our PART
system was able to save CPU energy ranging from 8% to 25%,
with an average savings of 18%. The average actual perfa@nan
slowdown is 3%.
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Figure 12: NAS-MPI for Class B Workload on the Athlon64-
Based Cluster.
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Figure 13: NAS-MPI for Class C Workload on the Athlon64-
Based Cluster.
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6. CONCLUSION

Power awareness has increasingly become an importantirssue
high-performance computing (HPC). In HPC, ignoring powam-c
sumption as a design constraint results in a system with djigh
erational costs for power and cooling and can detrimentaifact
reliability, which translates into lost productivity.

To address the above issues, we present a power-aware solu-
tion that works on any commodity platform that supports agita
voltage and frequency scaling (DVFS). Speci cally, we prep a
power-aware algorithm called theadaptation algorithm and pro-
totype an implementation of the algorithm as a power-aware r
time (PART) system. The PART system transparently and auto-
matically adapts CPU voltage and frequency so as to redugerpo
consumption (and energy usage) while minimizing impact en p
formance. The performance evaluation on both uniprocemssor
multiprocessor platforms show that the system achievedesgn
goal. That is, the system can save CPU energy consumption by
as much as 20% for sequential benchmarks and 25% for parallel
benchmarks that we tested, at a cost of 3-5% performancadiegr
tion. Moreover, the performance degradation was tighthticdled
by our PART system for all the benchmarks.
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